When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. London dispersion force - Wikipedia

    en.wikipedia.org/wiki/London_dispersion_force

    London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds[1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are ...

  3. Van der Waals force - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_force

    The London–van der Waals forces are related to the Casimir effect for dielectric media, the former being the microscopic description of the latter bulk property. The first detailed calculations of this were done in 1955 by E. M. Lifshitz. [15] [16] A more general theory of van der Waals forces has also been developed. [17] [18]

  4. Intermolecular force - Wikipedia

    en.wikipedia.org/wiki/Intermolecular_force

    An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. atoms or ions. Intermolecular forces are weak relative to intramolecular forces – the forces which ...

  5. Fritz London - Wikipedia

    en.wikipedia.org/wiki/Fritz_London

    Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German born physicist and professor at Duke University. His fundamental contributions to the theories of chemical bonding and of intermolecular forces (London dispersion forces) are today considered classic and are discussed in standard textbooks of physical chemistry.

  6. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2] Non-covalent interactions [4] are critical in maintaining the three-dimensional structure of large molecules, such as proteins and nucleic acids.

  7. Molecular solid - Wikipedia

    en.wikipedia.org/wiki/Molecular_solid

    The gaseous phase of the dry ice in image (b) is visible because the molecular solid is subliming. A molecular solid is a solid consisting of discrete molecules. The cohesive forces that bind the molecules together are van der Waals forces, dipole–dipole interactions, quadrupole interactions, π–π interactions, hydrogen bonding, halogen ...

  8. Dispersive adhesion - Wikipedia

    en.wikipedia.org/wiki/Dispersive_adhesion

    The source of adhesive forces, according to the dispersive adhesion mechanism, is the weak interactions that occur between molecules close together. These interactions include London dispersion forces, Keesom forces, Debye forces and hydrogen bonds. Individually, these attractions are not very strong, but when summed over the bulk of a material ...

  9. Hamaker constant - Wikipedia

    en.wikipedia.org/wiki/Hamaker_constant

    The Van der Waals forces are effective only up to several hundred angstroms. When the interactions are too far apart, the dispersion potential decays faster than 1 / r 6 ; {\displaystyle 1/r^{6};} this is called the retarded regime, and the result is a Casimir–Polder force .