When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  3. Coefficient of multiple correlation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_multiple...

    Coefficient of multiple correlation. In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable's values and the best predictions that can be computed linearly from the predictive variables.

  4. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    The Pearson product-moment correlation coefficient, also known as r, R, or Pearson's r, is a measure of the strength and direction of the linear relationship between two variables that is defined as the covariance of the variables divided by the product of their standard deviations. [4] This is the best-known and most commonly used type of ...

  5. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The most familiar measure of dependence between two quantities is the Pearson product-moment correlation coefficient (PPMCC), or "Pearson's correlation coefficient", commonly called simply "the correlation coefficient". It is obtained by taking the ratio of the covariance of the two variables in question of our numerical dataset, normalized to ...

  6. Partial correlation - Wikipedia

    en.wikipedia.org/wiki/Partial_correlation

    Partial correlation. In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading ...

  7. Intraclass correlation - Wikipedia

    en.wikipedia.org/wiki/Intraclass_correlation

    An important property of the Pearson correlation is that it is invariant to application of separate linear transformations to the two variables being compared. Thus, if we are correlating X and Y, where, say, Y = 2X + 1, the Pearson correlation between X and Y is 1 — a perfect correlation. This property does not make sense for the ICC, since ...

  8. Distance correlation - Wikipedia

    en.wikipedia.org/wiki/Distance_correlation

    The classical measure of dependence, the Pearson correlation coefficient, [1] is mainly sensitive to a linear relationship between two variables. Distance correlation was introduced in 2005 by Gábor J. Székely in several lectures to address this deficiency of Pearson's correlation, namely that it can easily be zero for dependent variables.

  9. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X, we have the covariance of a variable with itself (i.e. ), which is called the variance and is more commonly denoted as the square of the standard deviation.