Search results
Results From The WOW.Com Content Network
This property directly affects the Curie temperature as there can be a bulk Curie temperature T B and a different surface Curie temperature T S for a material. [39] This allows for the surface Curie temperature to be ferromagnetic above the bulk Curie temperature when the main state is disordered, i.e. ordered and disordered states occur ...
Ferromagnets is a term that most people are familiar with, and, as with ferroelastics, the spontaneous magnetization of a ferromagnet can be attributed to a breaking of point symmetry in switching from the paramagnetic to the ferromagnetic phase. In this case, is normally known as the Curie temperature.
Spontaneous magnetization is the appearance of an ordered spin state (magnetization) at zero applied magnetic field in a ferromagnetic or ferrimagnetic material below a critical point called the Curie temperature or T C.
Compounds at temperatures below the Curie temperature exhibit long-range magnetic order in the form of ferromagnetism. Another critical temperature is the Néel temperature, below which antiferromagnetism occurs. The hexahydrate of nickel chloride, NiCl 2 ·6H 2 O, has a Néel temperature of 8.3 K. The susceptibility is a maximum at this ...
This threshold temperature below which a material is ferromagnetic is called the Curie temperature and is different for each material. The Curie–Weiss law describes the changes in a material's magnetic susceptibility, , near its Curie temperature. The magnetic susceptibility is the ratio between the material's magnetization and the applied ...
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...
Below the magnetization compensation point, ferrimagnetic material is magnetic. At the compensation point, the magnetic components cancel each other, and the total magnetic moment is zero. Above the Curie temperature, the material loses magnetism. Ferrimagnetism has the same physical origins as ferromagnetism and antiferromagnetism.
At 95.6 °C the two forms can co-exist. Another example is tin, which transitions from a cubic crystal below 13.2 °C to a tetragonal crystal above that temperature. In the case of ferroelectric or ferromagnetic crystals, a transition temperature may be known as the Curie temperature.