Search results
Results From The WOW.Com Content Network
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
A real number is computable if and only if the set of natural numbers it represents (when written in binary and viewed as a characteristic function) is computable. The set of computable real numbers (as well as every countable, densely ordered subset of computable reals without ends) is order-isomorphic to the set of rational numbers.
In mathematics, Roth's theorem or Thue–Siegel–Roth theorem is a fundamental result in diophantine approximation to algebraic numbers.It is of a qualitative type, stating that algebraic numbers cannot have many rational approximations that are 'very good'.
Simple rational approximation (SRA) is a subset of interpolating methods using rational functions. Especially, SRA interpolates a given function with a specific rational function whose poles and zeros are simple, which means that there is no multiplicity in poles and zeros. Sometimes, it only implies simple poles.
The following is an example of a possible implementation of Newton's method in the Python (version 3.x) programming language for finding a root of a function f which has derivative f_prime. The initial guess will be x 0 = 1 and the function will be f ( x ) = x 2 − 2 so that f ′ ( x ) = 2 x .
Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...
The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, 2 {\displaystyle {\sqrt {2}}} , can be defined as the unique positive solution to the equation x 2 = 2 {\displaystyle x^{2}=2} , and it can be constructed with a compass and straightedge.
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).