When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nonlinear regression - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_regression

    In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).

  3. Nonlinear system - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system

    In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]

  4. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  6. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    For any non-linear model (for instance Logit and Probit models), however, heteroscedasticity has more severe consequences: the maximum likelihood estimates (MLE) of the parameters will usually be biased, as well as inconsistent (unless the likelihood function is modified to correctly take into account the precise form of heteroscedasticity or ...

  7. Nonlinear modelling - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_modelling

    The newer nonlinear modelling approaches include non-parametric methods, such as feedforward neural networks, kernel regression, multivariate splines, etc., which do not require a priori knowledge of the nonlinearities in the relations. Thus the nonlinear modelling can utilize production data or experimental results while taking into account ...

  8. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.

  9. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    Some special cases of nonlinear programming have specialized solution methods: If the objective function is concave (maximization problem), or convex (minimization problem) and the constraint set is convex , then the program is called convex and general methods from convex optimization can be used in most cases.