Search results
Results From The WOW.Com Content Network
two different references to the same object, e.g., two nicknames for the same person; In many modern programming languages, objects and data structures are accessed through references. In such languages, there becomes a need to test for two different types of equality: Location equality (identity): if two references (A and B) reference the same ...
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
A set of 20 points in a 10 × 10 grid, with no three points in a line. The no-three-in-line problem in discrete geometry asks how many points can be placed in the grid so that no three points lie on the same line.
The two-point form of the equation of a line can be expressed simply in terms of a determinant. There are two common ways for that. There are two common ways for that. The equation ( x 2 − x 1 ) ( y − y 1 ) − ( y 2 − y 1 ) ( x − x 1 ) = 0 {\displaystyle (x_{2}-x_{1})(y-y_{1})-(y_{2}-y_{1})(x-x_{1})=0} is the result of expanding the ...
A simple procedure to determine which half-plane is in the solution set is to calculate the value of ax + by at a point (x 0, y 0) which is not on the line and observe whether or not the inequality is satisfied. For example, [3] to draw the solution set of x + 3y < 9, one first draws the line with equation x + 3y = 9 as a dotted line, to ...
The Keynesian cross diagram includes an identity line to show states in which aggregate demand equals output. In a 2-dimensional Cartesian coordinate system, with x representing the abscissa and y the ordinate, the identity line [1] [2] or line of equality [3] is the y = x line. The line, sometimes called the 1:1 line, has a slope of 1. [4]
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation. If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint.