Search results
Results From The WOW.Com Content Network
a=chord, b=thickness, thickness-to-chord ratio = b/a The F-104 wing has a very low thickness-to-chord ratio of 3.36%. In aeronautics, the thickness-to-chord ratio, sometimes simply chord ratio or thickness ratio, compares the maximum vertical thickness of a wing to its chord.
The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)
The aspect ratio is the span divided by the mean or average chord. [10] It is a measure of how long and slender the wing appears when seen from above or below. Low aspect ratio: short and stubby wing. Structurally efficient, high instantaneous roll rate, low supersonic drag.
An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]
For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.
The chord of the slat is typically only a few percent of the wing chord. The slats may extend over the outer third of the wing, or they may cover the entire leading edge . Many early aerodynamicists, including Ludwig Prandtl , believed that slats work by inducing a high energy stream to the flow of the main airfoil , thus re-energizing its ...
Where c is the mean aerodynamic chord of the main wing. The term: = is known as the tail volume ratio. Its coefficient, the ratio of the two lift derivatives, has values in the range of 0.50 to 0.65 for typical configurations.
The one-piece wing of the Couzinet 10 was 900 mm (35.4 in) thick at the root, a thickness to chord ratio of 18%, [2] and thinned continuously out to the tip. In plan each wing was trapezoidal, though long tips produced an approximately elliptical form. Long, narrow-chord ailerons filled most of the straight part of the trailing edges.