When.com Web Search

  1. Ads

    related to: simple exponential smoothing forecasting formula calculator download

Search results

  1. Results From The WOW.Com Content Network
  2. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing was first suggested in the statistical literature without citation to previous work by Robert Goodell Brown in 1956, [3] and then expanded by Charles C. Holt in 1957. [4] The formulation below, which is the one commonly used, is attributed to Brown and is known as "Brown’s simple exponential smoothing". [5]

  3. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: . curve fitting often involves the use of an explicit function form for the result, whereas the immediate results from smoothing are the "smoothed" values with no later use made of a functional form if there is one;

  4. Tracking signal - Wikipedia

    en.wikipedia.org/wiki/Tracking_signal

    The tracking signal is then used as the value of the smoothing constant for the next forecast. The idea is that when the tracking signal is large, it suggests that the time series has undergone a shift; a larger value of the smoothing constant should be more responsive to a sudden shift in the underlying signal.

  5. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    If the smoothing or fitting procedure has projection matrix (i.e., hat matrix) L, which maps the observed values vector to predicted values vector ^ =, then PE and MSPE are formulated as: P E i = g ( x i ) − g ^ ( x i ) , {\displaystyle \operatorname {PE_{i}} =g(x_{i})-{\widehat {g}}(x_{i}),}

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The default Expert Modeler feature evaluates a range of seasonal and non-seasonal autoregressive (p), integrated (d), and moving average (q) settings and seven exponential smoothing models. The Expert Modeler can also transform the target time-series data into its square root or natural log.

  7. Zero lag exponential moving average - Wikipedia

    en.wikipedia.org/wiki/Zero_lag_exponential...

    The formula for a given N-Day period and for a given data series is: [2] [3] = = + (()) = (,) The idea is do a regular exponential moving average (EMA) calculation but on a de-lagged data instead of doing it on the regular data.

  8. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Extension packages contain related and extended functionality: package tseries includes the function arma(), documented in "Fit ARMA Models to Time Series"; packagefracdiff contains fracdiff() for fractionally integrated ARMA processes; and package forecast includes auto.arima for selecting a parsimonious set of p, q.

  9. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Exponentially weighted moving average (EWMA) is an alternative model in a separate class of exponential smoothing models. As an alternative to GARCH modelling it has some attractive properties such as a greater weight upon more recent observations, but also drawbacks such as an arbitrary decay factor that introduces subjectivity into the ...