When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.

  3. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity , including both spacecraft and natural ...

  4. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    A space rendezvous is a sequence of orbital maneuvers during which two spacecraft, one of which is often a space station, arrive at the same orbit and approach to a very close distance (e.g. within visual contact).

  5. Spacecraft propulsion - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_propulsion

    Space exploration is about reaching the destination safely (mission enabling), quickly (reduced transit times), with a large quantity of payload mass, and relatively inexpensively (lower cost). The act of reaching the destination requires an in-space propulsion system, and the other metrics are modifiers to this fundamental action.

  6. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  7. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    In most situations it is impractical to achieve escape velocity almost instantly, because of the acceleration implied, and also because if there is an atmosphere, the hypersonic speeds involved (on Earth a speed of 11.2 km/s, or 40,320 km/h) would cause most objects to burn up due to aerodynamic heating or be torn apart by atmospheric drag. For ...

  8. Space travel under constant acceleration - Wikipedia

    en.wikipedia.org/wiki/Space_travel_under...

    As a rule of thumb, for a constant acceleration at 1 g (Earth gravity), the journey time, as measured on Earth, will be the distance in light years to the destination, plus 1 year. This rule of thumb will give answers that are slightly shorter than the exact calculated answer, but reasonably accurate.

  9. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    These last three equations can be used as the starting point for the derivation of an equation of motion in General Relativity, instead of assuming that acceleration is zero in free fall. [2] Because the Minkowski tensor is involved here, it becomes necessary to introduce something called the metric tensor in General Relativity.