Search results
Results From The WOW.Com Content Network
After Taligent became part of IBM in early 1996, Sun Microsystems decided that the new Java language should have better support for internationalization. Since Taligent had experience with such technologies and were close geographically, their Text and International group were asked to contribute the international classes to the Java Development Kit as part of the JDK 1.1 internationalization ...
Only a small subset of possible byte strings are error-free UTF-8: several bytes cannot appear; a byte with the high bit set cannot be alone; and in a truly random string a byte with a high bit set has only a 1 ⁄ 15 chance of starting a valid UTF-8 character. This has the (possibly unintended) consequence of making it easy to detect if a ...
Some compilers or editors will require entering all non-ASCII characters as \xNN sequences for each byte of UTF-8, and/or \uNNNN for each word of UTF-16. Since C11 (and C++11), a new literal prefix u8 is available that guarantees UTF-8 for a bytestring literal, as in char foo [512] = u8 "φωωβαρ";. [7] Since C++20 and C23, a char8_t type ...
UTF-8 byte order mark, commonly seen in text files. [28] [29] [30] FF FE: ÿþ: 0 txt others: UTF-16LE byte order mark, commonly seen in text files. [28] [29] [30] FE FF: þÿ: 0 txt others: UTF-16BE byte order mark, commonly seen in text files. [28] [29] [30] FF FE 00 00: ÿþ␀␀ 0 txt others: UTF-32LE byte order mark for text [28] [30] 00 ...
A UTF-8 file that contains only ASCII characters is identical to an ASCII file. Legacy programs can generally handle UTF-8 encoded files, even if they contain non-ASCII characters. For instance, the C printf function can print a UTF-8 string because it only looks for the ASCII '%' character to define a formatting string. All other bytes are ...
HTML and XML provide ways to reference Unicode characters when the characters themselves either cannot or should not be used. A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name.
Current Windows versions and all back to Windows XP and prior Windows NT (3.x, 4.0) are shipped with system libraries that support string encoding of two types: 16-bit "Unicode" (UTF-16 since Windows 2000) and a (sometimes multibyte) encoding called the "code page" (or incorrectly referred to as ANSI code page). 16-bit functions have names suffixed with 'W' (from "wide") such as SetWindowTextW.
In UTF-16, a BOM (U+FEFF) may be placed as the first bytes of a file or character stream to indicate the endianness (byte order) of all the 16-bit code units of the file or stream. If an attempt is made to read this stream with the wrong endianness, the bytes will be swapped, thus delivering the character U+FFFE , which is defined by Unicode as ...