Search results
Results From The WOW.Com Content Network
The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as 3 {\textstyle {\sqrt {3}}} or 3 1 / 2 {\displaystyle 3^{1/2}} . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property.
A method for finding very good approximations to the square roots of 2 and 3 are given in the ... the simple continued fraction for the square root of 11, [3; ...
It can also be shown that truncating a continued fraction yields a rational fraction that is the best approximation to the root of any fraction with denominator less than or equal to the denominator of that fraction — e.g., no fraction with a denominator less than or equal to 70 is as good an approximation to √ 2 as 99/70.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains ... The cube root of two (2 1/3 or ...
For example: the roots of numbers such as 10, 15, 20 which are not squares, the sides of numbers which are not cubes etc." In contrast to Euclid's concept of magnitudes as lines, Al-Mahani considered integers and fractions as rational magnitudes, and square roots and cube roots as irrational magnitudes.
The picture to the right illustrates 3 / 4 of a cake. Fractions can be used to represent ratios and division. [1] Thus the fraction 3 / 4 can be used to represent the ratio 3:4 (the ratio of the part to the whole), and the division 3 ÷ 4 (three divided by four).
In mathematics, a cube root of a number x is a number y such that y 3 = x. ... Also useful is this generalized continued fraction, based on the nth root method: