When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    However, Euclid's reasoning from assumptions to conclusions remains valid independently from the physical reality. [4] Near the beginning of the first book of the Elements, Euclid gives five postulates (axioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath): [5] Let the following be postulated:

  3. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.

  4. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.

  5. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Euclid then presents 10 assumptions (see table, right), grouped into five postulates (axioms) and five common notions. [45] [k] These assumptions are intended to provide the logical basis for every subsequent theorem, i.e. serve as an axiomatic system. [46] [l] The common notions exclusively concern the comparison of magnitudes. [48]

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Near the beginning of the first book of the Elements, Euclid gives five postulates (axioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath): [16] "Let the following be postulated": "To draw a straight line from any point to any point." "To produce [extend] a finite straight line continuously in a straight line."

  7. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    The postulates of Euclid are profitably motivated by saying that they lead to a great wealth of geometric facts. The truth of these complicated facts rests on the acceptance of the basic hypotheses. However, by throwing out Euclid's fifth postulate, one can get theories that have meaning in wider contexts (e.g., hyperbolic geometry). As such ...

  8. Portal:Mathematics/Selected article/5 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    Euclid's Elements (Greek: Στοιχεῖα) is a mathematical and geometric treatise, consisting of 13 books, written by the Hellenistic mathematician Euclid in Egypt during the early 3rd century BC. It comprises a collection of definitions, postulates , propositions and proofs thereof.

  9. Point–line–plane postulate - Wikipedia

    en.wikipedia.org/wiki/Point–line–plane_postulate

    These five initial axioms (called postulates by the ancient Greeks) are not sufficient to establish Euclidean geometry. Many mathematicians have produced complete sets of axioms which do establish Euclidean geometry. One of the most notable of these is due to Hilbert who created a system in the same style as Euclid. Unfortunately, Hilbert's ...