When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.

  3. Coefficients of potential - Wikipedia

    en.wikipedia.org/wiki/Coefficients_of_potential

    In this example, we employ the method of coefficients of potential to determine the capacitance on a two-conductor system. For a two-conductor system, the system of linear equations is ϕ 1 = p 11 Q 1 + p 12 Q 2 ϕ 2 = p 21 Q 1 + p 22 Q 2 . {\displaystyle {\begin{matrix}\phi _{1}=p_{11}Q_{1}+p_{12}Q_{2}\\\phi _{2}=p_{21}Q_{1}+p_{22}Q_{2}\end ...

  4. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The total electrostatic potential energy stored in a capacitor is given by = = = where C is the capacitance, V is the electric potential difference, and Q the charge stored in the capacitor. Outline of proof

  5. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Capacitance is the ability of an object to store electric charge. It is measured by the charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance.

  6. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    The displacement field D is measured in units of coulombs per square meter (C/m 2), while the electric field E is measured in volts per meter (V/m). D and E describe the interaction between charged objects. D is related to the charge densities associated with this interaction, while E is related to the forces and potential differences.

  7. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    The electric potential is the same everywhere inside the conductor and is constant across the surface of the conductor. This follows from the first statement because the field is zero everywhere inside the conductor and therefore the potential is constant within the conductor too. The electric field is perpendicular to the surface of a conductor.

  8. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    The unit of capacitance is the farad, named after Michael Faraday, and given the symbol F: one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as ...

  9. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.