Search results
Results From The WOW.Com Content Network
The Golgi tendon organ (GTO) (also called Golgi organ, tendon organ, neurotendinous organ or neurotendinous spindle) is a proprioceptor – a type of sensory receptor that senses changes in muscle tension. It lies at the interface between a muscle and its tendon known as the musculotendinous junction also known as the myotendinous junction. [1]
The Golgi tendon reflex operates as a protective feedback mechanism to control the tension of an active muscle by causing relaxation before the tendon tension becomes high enough to cause damage. [7] First, as a load is placed on the muscle, the afferent neuron from the Golgi tendon organ fires into the central nervous system.
Using Sherrington's system, physiologists and anatomists search for specialised nerve endings that transmit mechanical data on joint capsule, tendon and muscle tension (such as Golgi tendon organs and muscle spindles), which play a large role in proprioception. [citation needed]
The internal tendon bulk is thought to contain no nerve fibres, but the epitenon and paratenon contain nerve endings, while Golgi tendon organs are present at the myotendinous junction between tendon and muscle. Tendon length varies in all major groups and from person to person.
The number of bones in the human skeletal system is a controversial topic. Humans are born with over 300 bones; however, many bones fuse together between birth and maturity. As a result, an average adult skeleton consists of 206 bones. The number of bones varies according to the method used to derive the count.
Golgi type II axon synaptic terminals may resemble dendritic endings, however many axonal endings seem to have narrower profiles with smaller, flatter vesicles. [29] Their average diameter varied from 12 to 30 lm, with a mean of 22.2 lm on average (5.8 ± n = 120). [ 27 ]
Golgi's method is a silver staining technique that is used to visualize nervous tissue under light microscopy. The method was discovered by Camillo Golgi , an Italian physician and scientist , who published the first picture made with the technique in 1873. [ 1 ]
Deep fascia can also relax slowly as some mechanoreceptors respond to changes over longer timescales. Unlike the Golgi tendon organs, Golgi receptors report joint position independent of muscle contraction. This helps the body to know where the bones are at any given moment. Ruffini endings respond to regular stretching and to slow sustained ...