Ads
related to: wolff kishner reaction equation solverstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
The 4-acetyl group could easily be converted to a 4-ethyl group by Wolff-Kishner reduction (hydrazine and alkali, heated); hydrogenolysis, or the use of diborane. Benzyl or tert-butyl acetoacetates also work well in this system, and with close temperature control, the tert-butyl system gives a very high yield (close to 80%). [10]
Mechanism of Wolff-Kishner reduction Aromatic carbonyls are more readily reduced to their respective alkanes than aliphatic compounds. [ 26 ] For example, ketones are reduced to their respective alkyl benzenes by catalytic hydrogenation [ 27 ] [ 28 ] or by Birch reduction [ 29 ] under mild conditions.
The reaction is occasionally called the Wolff-Schröter rearrangement. [2] The Wolff rearrangement was not commonly used until 20 years after it was discovered, as facile diazo ketone synthesis was unknown until the 1930s. [2] The reaction has proven useful in synthetic organic chemistry and many reviews have been published. [1] [2] Wolff's ...
Because the second step occurs under nearly anhydrous conditions, yields tend to be higher, while reaction times are sometimes dramatically shortened compared to the original version of the reaction. Even with the development of other variants of the Wolff-Kishner reaction, it remains a widely practiced version of the reaction today.
Hydrazones are intermediates in the Wolff–Kishner reduction. Hydrazones are reactants in hydrazone iodination, the Shapiro reaction, and the Bamford–Stevens reaction to vinyl compounds. Hydrazones can also be synthesized by the Japp–Klingemann reaction via β-keto acids or β-keto-esters and aryl diazonium
Hydrazine is used in the Wolff–Kishner reduction, a reaction that transforms the carbonyl group of a ketone into a methylene bridge (or an aldehyde into a methyl group) via a hydrazone intermediate. The production of the highly stable dinitrogen from the hydrazine derivative helps to drive the reaction.
Ludwig Wolff (27 September 1857 – 24 February 1919), born in Neustadt in Palatinate, was a German chemist. [1] He studied chemistry at the University of Strasbourg, where he received his Ph.D. from Rudolph Fittig in 1882. He became Professor of analytical chemistry at the University of Jena in 1891 and held this position till his death in 1919.