Search results
Results From The WOW.Com Content Network
An anti-rotation link prevents the inner swash from rotating independently of the blades, which would apply torque to the actuators. The outer swashplate typically has an anti-rotation slider as well to prevent it from rotating. Both swashplates tilt up and down as one unit. The rotating swashplate is connected to the pitch horns by the pitch ...
A helicopter swashplate is a pair of plates, one rotating and one fixed, that are centered on the main rotor shaft. The rotating plate is linked to the rotor head, and the fixed plate is linked to the operator controls.
The helicopter rotor is powered by the engine, through the transmission, to the rotating mast. The mast is a cylindrical metal shaft that extends upward from—and is driven by—the transmission. At the top of the mast is the attachment point (colloquially called a Jesus nut ) for the rotor blades called the hub.
A coaxial-rotor aircraft is an aircraft whose rotors are mounted one above the other on concentric shafts, with the same axis of rotation, but turning in opposite directions (contra-rotating). This rotor configuration is a feature of helicopters produced by the Russian Kamov helicopter design bureau.
Helicopters with fly-by-wire systems allow a cyclic-style controller to be mounted to the side of the pilot seat. The cyclic is used to control the main rotor in order to change the helicopter's direction of movement. In a hover, the cyclic controls the movement of the helicopter forward, back, and laterally.
In a helicopter the maximum forward speed is defined by the turn speed of the rotor; at some point the helicopter will be moving forward at the same speed as the spinning of the backwards-moving side of the rotor, so that side of the rotor sees zero or negative airspeed, and begins to stall.
Dynamic rollover critical conditions: The forces acting on a helicopter with counterclockwise rotor rotation, and the right skid on the ground. The critical rollover angle is 5°-8°. Once exceeded, main rotor thrust continues the roll, and recovery via cyclic control is impossible. [1]
Tandem-rotor helicopters, however, use counter-rotating rotors, with each cancelling out the other's torque. Therefore, all of the power from the engines can be used for lift, whereas a single-rotor helicopter uses some of the engine power to counter the torque. [1] An alternative is to mount two rotors in a coaxial configuration.