When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    the inverse geodesic problem or second geodesic problem, given A and B, determine s 12, α 1, and α 2. As can be seen from Fig. 1, these problems involve solving the triangle NAB given one angle, α 1 for the direct problem and λ 12 = λ 2 − λ 1 for the inverse problem, and its two adjacent sides.

  3. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    As noted above, the iterative solution to the inverse problem fails to converge or converges slowly for nearly antipodal points. An example of slow convergence is (Φ 1, L 1) = (0°, 0°) and (Φ 2, L 2) = (0.5°, 179.5°) for the WGS84 ellipsoid. This requires about 130 iterations to give a result accurate to 1 mm. Depending on how the inverse ...

  4. Earth section paths - Wikipedia

    en.wikipedia.org/wiki/Earth_section_paths

    The inverse problem for earth sections is: given two points, and on the surface of the reference ellipsoid, find the length, , of the short arc of a spheroid section from to and also find the departure and arrival azimuths (angle from true north) of that curve, and . The figure to the right illustrates the notation used here.

  5. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.

  6. Geodesy - Wikipedia

    en.wikipedia.org/wiki/Geodesy

    The solutions to both problems in plane geometry reduce to simple trigonometry and are valid for small areas on Earth's surface; on a sphere, solutions become significantly more complex as, for example, in the inverse problem, the azimuths differ going between the two end points along the arc of the connecting great circle.

  7. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825).

  8. Conformal map - Wikipedia

    en.wikipedia.org/wiki/Conformal_map

    Another example is the application of conformal mapping technique for solving the boundary value problem of liquid sloshing in tanks. [ 19 ] If a function is harmonic (that is, it satisfies Laplace's equation ∇ 2 f = 0 {\displaystyle \nabla ^{2}f=0} ) over a plane domain (which is two-dimensional), and is transformed via a conformal map to ...

  9. Category:Geodesic (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Category:Geodesic...

    Download as PDF; Printable version; ... Pages in category "Geodesic (mathematics)" ... The spider and the fly problem; T. Theorem of the three geodesics; V.