Search results
Results From The WOW.Com Content Network
When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice.
Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, . Then the electron mobility μ is defined as =.
electron holes – h; S indicates the lattice site that the species occupies. For instance, Ni might occupy a Cu site. In this case, M would be replaced by Ni and S would be replaced by Cu. The site may also be a lattice interstice, in this case, the symbol "i" is used.
For holes, is the number of holes per unit volume in the valence band. To calculate this number for electrons, we start with the idea that the total density of conduction-band electrons, n 0 {\displaystyle n_{0}} , is just adding up the conduction electron density across the different energies in the band, from the bottom of the band E c ...
The "holes" are, in effect, electron vacancies in the valence-band electron population of the semiconductor and are treated as charge carriers because they are mobile, moving from atom site to atom site. In n-type semiconductors, electrons in the conduction band move through the crystal, resulting in an electric current.
An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids.
It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron (and the electron hole in the valence band) are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the ...
The electron–hole pair is the fundamental unit of generation and recombination in inorganic semiconductors, corresponding to an electron transitioning between the valence band and the conduction band where generation of an electron is a transition from the valence band to the conduction band and recombination leads to a reverse transition.