Ads
related to: how to find upper and lower quartile in excel function
Search results
Results From The WOW.Com Content Network
The QUARTILE function is a legacy function from Excel 2007 or earlier, giving the same output of the function QUARTILE.INC. In the function, array is the dataset of numbers that is being analyzed and quart is any of the following 5 values depending on which quartile is being calculated. [8]
The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q 3 and Q 1. Each quartile is a median [8] calculated as follows. Given an even 2n or odd 2n+1 number of values first quartile Q 1 = median of the n smallest values third quartile Q 3 = median of the n largest values [8]
Splitting the observations either side of the median gives two groups of four observations. The median of the first group is the lower or first quartile, and is equal to (0 + 1)/2 = 0.5. The median of the second group is the upper or third quartile, and is equal to (27 + 61)/2 = 44. The smallest and largest observations are 0 and 63.
The third quartile value for the original example above is determined by 11×(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15. 15 Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20.
Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:
The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles. The use of the term hinge for the lower or upper quartiles derives from John Tukey 's work on exploratory data analysis in the late 1970s, [ 1 ] and midhinge is a fairly modern term dating from around that time.
The numerator is difference between the average of the upper and lower quartiles (a measure of location) and the median (another measure of location), while the denominator is the semi-interquartile range ((/) (/)) /, which for symmetric distributions is equal to the MAD measure of dispersion.
A measure of statistical dispersion is a nonnegative real number that is zero if all the data are the same and increases as the data become more diverse.. Most measures of dispersion have the same units as the quantity being measured.