When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.

  3. Llama (language model) - Wikipedia

    en.wikipedia.org/wiki/Llama_(language_model)

    The model architecture remains largely unchanged from that of LLaMA-1 models, but 40% more data was used to train the foundational models. [26] The accompanying preprint [26] also mentions a model with 34B parameters that might be released in the future upon satisfying safety targets. LLaMa 2 includes foundation models and models fine-tuned for ...

  4. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    where =, =, … are the value vectors, linearly transformed by another matrix to provide the model with freedom to find the best way to represent values. Without the matrices W Q , W K , W V {\displaystyle W^{Q},W^{K},W^{V}} , the model would be forced to use the same hidden vector for both key and value, which might not be appropriate, as ...

  5. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    For example, training of the GPT-2 (i.e. a 1.5-billion-parameters model) in 2019 cost $50,000, while training of the PaLM (i.e. a 540-billion-parameters model) in 2022 cost $8 million, and Megatron-Turing NLG 530B (in 2021) cost around $11 million. [56] For Transformer-based LLM, training cost is much higher than inference cost.

  6. Radial basis function network - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_network

    Radial basis function (RBF) networks typically have three layers: an input layer, a hidden layer with a non-linear RBF activation function and a linear output layer. The input can be modeled as a vector of real numbers x ∈ R n {\displaystyle \mathbf {x} \in \mathbb {R} ^{n}} .

  7. Probabilistic neural network - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_neural_network

    This layer contains one neuron for each case in the training data set. It stores the values of the predictor variables for the case along with the target value. A hidden neuron computes the Euclidean distance of the test case from the neuron's center point and then applies the radial basis function kernel using the sigma values.

  8. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The first layer is the embedding layer, which contains three components: token type embeddings, position embeddings, and segment type embeddings. Token type: The token type is a standard embedding layer, translating a one-hot vector into a dense vector based on its token type.

  9. Neural architecture search - Wikipedia

    en.wikipedia.org/wiki/Neural_architecture_search

    Neural architecture search (NAS) [1] [2] is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning. NAS has been used to design networks that are on par with or outperform hand-designed architectures.