Search results
Results From The WOW.Com Content Network
Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. [3] Thus, this test yields 2 possible situations: If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant ...
In the example on the right, both parents are heterozygous, with a genotype of Bb. The offspring can inherit a dominant allele from each parent, making them homozygous with a genotype of BB. The offspring can inherit a dominant allele from one parent and a recessive allele from the other parent, making them heterozygous with a genotype of Bb.
Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).
[9] [10] The GG or GA genotype produces the wet ear wax phenotype (sticky and brown colored) and acrid sweat odor and is the dominant allele. [9] Note this phenotype requires only the presence of one guanine. The homozygous recessive AA genotype produces the dry ear wax phenotype (dry and flaky) and mildly odored sweat. [9]
The phenotype of a homozygous dominant pair is 'A', or dominant, while the opposite is true for homozygous recessive. Heterozygous pairs always have a dominant phenotype. [ 11 ] To a lesser degree, hemizygosity [ 12 ] and nullizygosity [ 13 ] can also be seen in gene pairs.
An individual that is homozygous-dominant for a particular trait carries two copies of the allele that codes for the dominant trait. This allele, often called the "dominant allele", is normally represented by the uppercase form of the letter used for the corresponding recessive trait (such as "P" for the dominant allele producing purple flowers ...
Thus, allele R is dominant over allele r, and allele r is recessive to allele R. [4] Dominance is not inherent to an allele or its traits . It is a strictly relative effect between two alleles of a given gene of any function; one allele can be dominant over a second allele of the same gene, recessive to a third, and co-dominant with a fourth.
For the alleles that confer an advantage in the heterozygous and/or homozygous-dominant state, the fitness of the homozygous-recessive state may even be zero (meaning sterile or unviable offspring). An example of inbreeding depression is shown in the image. In this case, a is the recessive allele which