Search results
Results From The WOW.Com Content Network
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
A hexadecimal clock-face (using the Florence meridian) Hexadecimal time is the representation of the time of day as a hexadecimal number in the interval [0, 1). The day is divided into 10 16 (16 10 ) hexadecimal hours, each hour into 100 16 (256 10 ) hexadecimal minutes, and each minute into 10 16 (16 10 ) hexadecimal seconds.
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 1111011 2 implies that the number 1111011 is a base-2 number, equal to 123 10 (a decimal notation representation), 173 8 and 7B 16 (hexadecimal).
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
A calendrical calculation is a calculation concerning calendar dates. Calendrical calculations can be considered an area of applied mathematics. Some examples of calendrical calculations: Converting a Julian or Gregorian calendar date to its Julian day number and vice versa (see § Julian day number calculation within that article for details).
Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.
This is because the radix of the hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 2 4, so it takes four digits of binary to represent one digit of hexadecimal, as shown in the adjacent table. To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary ...