Search results
Results From The WOW.Com Content Network
In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.
A singular solution y s (x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the ...
are linearly independent for any choice of n distinct points x 1, x 2... x n in Ω. Equivalently, the collection is unisolvent if the matrix F with entries f i (x j) has nonzero determinant: det(F) ≠ 0 for any choice of distinct x j 's in Ω. Unisolvency is a property of vector spaces, not just particular sets of functions.
Moreover, they both take the value when is the identity matrix. The above-mentioned unique characterization of alternating multilinear maps therefore shows this claim. [8] A matrix with entries in a field is invertible precisely if its determinant is nonzero. This follows from the multiplicativity of the determinant and the formula for the ...
Therefore the polynomial equation p A (λ) = 0 has at most n different solutions, that is, eigenvalues of the matrix. [42] They may be complex even if the entries of A are real. According to the Cayley–Hamilton theorem, p A (A) = 0, that is, the result of substituting the matrix itself into its characteristic polynomial yields the zero matrix.
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
where R 1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q 1 is m×n, Q 2 is m×(m − n), and Q 1 and Q 2 both have orthogonal columns. Golub & Van Loan (1996 , §5.2) call Q 1 R 1 the thin QR factorization of A ; Trefethen and Bau call this the reduced QR factorization . [ 1 ]