When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Retrocausality - Wikipedia

    en.wikipedia.org/wiki/Retrocausality

    Retrocausality, or backwards causation, is a concept of cause and effect in which an effect precedes its cause in time and so a later event affects an earlier one. [1] [2] In quantum physics, the distinction between cause and effect is not made at the most fundamental level and so time-symmetric systems can be viewed as causal or retrocausal.

  3. Causality (physics) - Wikipedia

    en.wikipedia.org/wiki/Causality_(physics)

    Causality is the relationship between causes and effects. [1] [2] While causality is also a topic studied from the perspectives of philosophy and physics, it is operationalized so that causes of an event must be in the past light cone of the event and ultimately reducible to fundamental interactions. Similarly, a cause cannot have an effect ...

  4. Telophase - Wikipedia

    en.wikipedia.org/wiki/Telophase

    Telophase (from Ancient Greek τέλος 'end, result, completion' and φάσις (phásis) 'appearance') is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase (the nucleolus and nuclear membrane disintegrating) are reversed.

  5. Temporal paradox - Wikipedia

    en.wikipedia.org/wiki/Temporal_paradox

    A bootstrap paradox, also known as an information loop, an information paradox, [6] an ontological paradox, [7] or a "predestination paradox" is a paradox of time travel that occurs when any event, such as an action, information, an object, or a person, ultimately causes itself, as a consequence of either retrocausality or time travel. [8] [9 ...

  6. Retarded time - Wikipedia

    en.wikipedia.org/wiki/Retarded_time

    Position vectors r and r′ used in the calculation. Retarded time t r or t′ is calculated with a "speed-distance-time" calculation for EM fields.. If the EM field is radiated at position vector r′ (within the source charge distribution), and an observer at position r measures the EM field at time t, the time delay for the field to travel from the charge distribution to the observer is |r ...

  7. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    The energy and momentum of electrons in solids can be described by introducing Bloch waves into the Schrödinger equation with applying periodic boundary conditions.Solving this eigenvalue equation, one obtains sets of solutions that are describing bands of energies that are allowed to the electrons: the electronic band structure.

  8. Arrow of time - Wikipedia

    en.wikipedia.org/wiki/Arrow_of_time

    In the 1928 book The Nature of the Physical World, which helped to popularize the concept, Eddington stated: . Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the random element in the state of the world, then the arrow is pointing towards the future; if the random element decreases the arrow points towards the past.

  9. Ramsauer–Townsend effect - Wikipedia

    en.wikipedia.org/wiki/Ramsauer–Townsend_effect

    These interactions are classified as inelastic if they cause excitation or ionization of the atom to occur and elastic if they do not. The probability of scattering in such a system is defined as the number of electrons scattered, per unit electron current, per unit path length, per unit pressure at 0 °C, per unit solid angle .