When.com Web Search

  1. Ads

    related to: discontinuity of second kind example worksheet 1 printable free full

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  4. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    The following table gives an overview of Green's functions of frequently appearing differential operators, where = + +, = +, is the Heaviside step function, () is a Bessel function, () is a modified Bessel function of the first kind, and () is a modified Bessel function of the second kind. [2]

  5. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    The early identification of self-similar solutions of the second kind can be found in problems of imploding shock waves (Guderley–Landau–Stanyukovich problem), analyzed by G. Guderley (1942) and Lev Landau and K. P. Stanyukovich (1944), [3] and propagation of shock waves by a short impulse, analysed by Carl Friedrich von Weizsäcker [4] and ...

  6. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    Again, f(z) = 1 is more than 1 ⁄ 2 away from f(y) = 0. Its restrictions to the set of rational numbers and to the set of irrational numbers are constants and therefore continuous. The Dirichlet function is an archetypal example of the Blumberg theorem .

  7. Piecewise function - Wikipedia

    en.wikipedia.org/wiki/Piecewise_function

    there is no discontinuity at an endpoint of any subdomain within that interval. The pictured function, for example, is piecewise-continuous throughout its subdomains, but is not continuous on the entire domain, as it contains a jump discontinuity at . The filled circle indicates that the value of the right sub-function is used in this position.

  8. Landau theory - Wikipedia

    en.wikipedia.org/wiki/Landau_theory

    The great virtue of Landau theory is that it makes specific predictions for what kind of non-analytic behavior one should see when the underlying free energy is analytic. Then, all the non-analyticity at the critical point, the critical exponents, are because the equilibrium value of the order parameter changes non-analytically, as a square ...

  9. Shocks and discontinuities (magnetohydrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Shocks_and_discontinuities...

    In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .