Search results
Results From The WOW.Com Content Network
In general, only one of the two enantiomers occurs naturally (for example, D-glucose) and can be metabolized by animals or fermented by yeasts. The term "hexose" sometimes is assumed to include deoxyhexoses , such as fucose and rhamnose : compounds with general formula C 6 H 12 O 6− y that can be described as derived from hexoses by ...
For example, the triketose H(CHOH)(C=O)(CHOH)H (glycerone, dihydroxyacetone) has no stereogenic center, and therefore exists as a single stereoisomer. The other triose, the aldose H(C=O)(CHOH) 2 H (glyceraldehyde), has one chiral carbon—the central one, number 2—which is bonded to groups −H, −OH, −C(OH)H 2, and −(C=O)H. Therefore ...
Sucrose is formed by plants, algae and cyanobacteria but not by other organisms. Sucrose is the end product of photosynthesis and is found naturally in many food plants along with the monosaccharide fructose. In many fruits, such as pineapple and apricot, sucrose is the main sugar. In others, such as grapes and pears, fructose is the main sugar.
Neurons, cells of the renal medulla and erythrocytes depend on glucose for their energy production. [71] In adult humans, there is about 18 g (0.63 oz) of glucose, [72] of which about 4 g (0.14 oz) is present in the blood. [73] Approximately 180–220 g (6.3–7.8 oz) of glucose is produced in the liver of an adult in 24 hours. [72]
Macroscopic examples of chirality are found in the plant kingdom, the animal kingdom and all other groups of organisms. A simple example is the coiling direction of any climber plant, which can grow to form either a left- or right-handed helix. In anatomy, chirality is found in the imperfect mirror image symmetry of many kinds of animal bodies.
Many chiral molecules have point chirality, namely a single chiral stereogenic center that coincides with an atom. This stereogenic center usually has four or more bonds to different groups, and may be carbon (as in many biological molecules), phosphorus (as in many organophosphates ), silicon, or a metal (as in many chiral coordination ...
Chiral molecules produced within the fields of organic chemistry or inorganic chemistry are racemic unless a chiral reagent was employed in the same reaction. At the fundamental level, polarization rotation in an optically active medium is caused by circular birefringence, and can best be understood in that way.
Mannose differs from glucose by inversion of the C-2 chiral center. Mannose displays a pucker in the solution ring form. This simple change leads to the drastically different biochemistry of the two hexoses. This change has the same effect on the other aldohexoses, as well. [citation needed]