Ad
related to: example of a recursive sequence in math equation based
Search results
Results From The WOW.Com Content Network
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
Constant-recursive sequences are closed under important mathematical operations such as term-wise addition, term-wise multiplication, and Cauchy product. The Skolem–Mahler–Lech theorem states that the zeros of a constant-recursive sequence have a regularly
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
Lucas sequences are used in some primality proof methods, including the Lucas–Lehmer–Riesel test, and the N+1 and hybrid N−1/N+1 methods such as those in Brillhart-Lehmer-Selfridge 1975. [4] LUC is a public-key cryptosystem based on Lucas sequences [5] that implements the analogs of ElGamal (LUCELG), Diffie–Hellman (LUCDIF), and RSA (LUCRSA
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. It can be used in conjunction with other tools for evaluating sums.
All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients. Some specific examples that are close, in some sense, to the Fibonacci sequence include:
In mathematics, the Skolem problem is the problem of determining whether the values of a constant-recursive sequence include the number zero. The problem can be formulated for recurrences over different types of numbers, including integers, rational numbers, and algebraic numbers.