Search results
Results From The WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
If a steady-state, steady-flow process is analysed using a control volume, everything outside the control volume is considered to be the surroundings. [2]Such a process will be isenthalpic if there is no transfer of heat to or from the surroundings, no work done on or by the surroundings, and no change in the kinetic energy of the fluid. [3]
Examples are friction on the surface of the system as in Rumford's experiment; shaft work such as in Joule's experiments; stirring of the system by a magnetic paddle inside it, driven by a moving magnetic field from the surroundings; and vibrational action on the system that leaves its eventual volume unchanged, but involves friction within the ...
The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.
Real gases are non-ideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law. To understand the behaviour of real gases, the following must be taken into account: compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects;
This type of expansion is named after James Prescott Joule who used this expansion, in 1845, in his study for the mechanical equivalent of heat, but this expansion was known long before Joule e.g. by John Leslie, in the beginning of the 19th century, and studied by Joseph Louis Gay-Lussac in 1807 with similar results as obtained by Joule. [1] [2]