Search results
Results From The WOW.Com Content Network
It can therefore be important that considerations of computation efficiency for such problems extend to all of the auxiliary quantities required for such analyses, and are not restricted to the formal solution of the linear least squares problem. Matrix calculations, like any other, are affected by rounding errors. An early summary of these ...
The minimum of f is 0 at z if and only if z solves the linear complementarity problem. If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades ...
Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.
Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. In matrix form, we can express the primal problem as: Maximize c T x subject to Ax ≤ b, x ≥ 0; with the corresponding symmetric dual problem,
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative. That is, given a matrix A and a (column) vector of response variables y , the goal is to find [ 1 ]
To solve the underdetermined (<) linear problem = where the matrix has dimensions and rank , first find the QR factorization of the transpose of : =, where Q is an orthogonal matrix (i.e. =), and R has a special form: = [].
In mathematical optimization, Lemke's algorithm is a procedure for solving linear complementarity problems, and more generally mixed linear complementarity problems. It is named after Carlton E. Lemke. Lemke's algorithm is of pivoting or basis-exchange type. Similar algorithms can compute Nash equilibria for two-person matrix and bimatrix games.