When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.

  3. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    They proved that the maximum number of points in the grid with no three points collinear is (). Similarly to Erdős's 2D construction, this can be accomplished by using points ( x , y , x 2 + y 2 {\displaystyle (x,y,x^{2}+y^{2}} mod p ) {\displaystyle p)} , where p {\displaystyle p} is a prime congruent to 3 mod 4 . [ 20 ]

  4. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated ...

  5. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    In general, the projective plane of order n has n 2 + n + 1 points and the same number of lines; each line contains n + 1 points, and each point is on n + 1 lines. A permutation of the Fano plane's seven points that carries collinear points (points on the same line) to collinear points is called a collineation of the plane.

  6. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    However, in a pappian projective plane a conic is a circle only if it passes through two specific points on the line at infinity, so a circle is determined by five non-collinear points, three in the affine plane and these two special points. Similar considerations explain the smaller than expected number of points needed to define pencils of ...

  7. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    Three or more collinear points, where the circumcircles are of infinite radii. Four or more points on a perfect circle, where the triangulation is ambiguous and all circumcenters are trivially identical. In this case the Voronoi diagram contains vertices of degree four or greater and its dual graph contains polygonal faces with four or more sides.

  8. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    Similarly, three generic points in the plane are not collinear; if three points are collinear (even stronger, if two coincide), this is a degenerate case. This notion is important in mathematics and its applications, because degenerate cases may require an exceptional treatment; for example, when stating general theorems or giving precise ...

  9. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Let V be the three-dimensional vector space defined over the field F. The projective plane P(V) = PG(2, F) consists of the one-dimensional vector subspaces of V, called points, and the two-dimensional vector subspaces of V, called lines. Incidence of a point and a line is given by containment of the one-dimensional subspace in the two ...