When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  3. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.

  4. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  5. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...

  6. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    These are called margin-based loss functions. Choosing a margin-based loss function amounts to choosing . Selection of a loss function within this framework impacts the optimal which minimizes the expected risk, see empirical risk minimization.

  7. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    The SVM learning code from both libraries is often reused in other open source machine learning toolkits, including GATE, KNIME, Orange [3] and scikit-learn. [4] Bindings and ports exist for programming languages such as Java, MATLAB, R, Julia, and Python. It is available in e1071 library in R and scikit-learn in Python.

  8. Margin classifier - Wikipedia

    en.wikipedia.org/wiki/Margin_classifier

    The margin for an iterative boosting algorithm given a dataset with two classes can be defined as follows: the classifier is given a sample pair (,), where is a domain space and = {, +} is the sample's label.

  9. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If all the hard constraints are linear and some are inequalities, but the objective function is quadratic, the problem is a quadratic programming problem. It is one type of nonlinear programming. It can still be solved in polynomial time by the ellipsoid method if the objective function is convex; otherwise the problem may be NP hard.