Search results
Results From The WOW.Com Content Network
In mathematics, change of base can mean any of several things: Changing numeral bases, such as converting from base 2 to base 10 . This is known as base conversion. The logarithmic change-of-base formula, one of the logarithmic identities used frequently in algebra and calculus.
The base-2 numeral system is a positional notation with a radix of 2.Each digit is referred to as a bit, or binary digit.Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because ...
Base √ 2 behaves in a very similar way to base 2 as all one has to do to convert a number from binary into base √ 2 is put a zero digit in between every binary digit; for example, 1911 10 = 11101110111 2 becomes 101010001010100010101 √ 2 and 5118 10 = 1001111111110 2 becomes 1000001010101010101010100 √ 2.
A frequency ratio expressed in octaves is the base-2 logarithm (binary logarithm) of the ratio: = An amplifier or filter may be stated to have a frequency response of ±6 dB per octave over a particular frequency range, which signifies that the power gain changes by ±6 decibels (a factor of 4 in power), when the frequency changes by a factor of 2.
Offset binary may be converted into two's complement by inverting the most significant bit. For example, with 8-bit values, the offset binary value may be XORed with 0x80 in order to convert to two's complement. In specialised hardware it may be simpler to accept the bit as it stands, but to apply its value in inverted significance.
In books and articles, when using initially the written abbreviations of number bases, the base is not subsequently printed: it is assumed that binary 1111011 is the same as 1111011 2. The base b may also be indicated by the phrase "base-b". So binary numbers are "base-2"; octal numbers are "base-8"; decimal numbers are "base-10"; and so on.
E min = 00001 2 − 01111 2 = −14; E max = 11110 2 − 01111 2 = 15; Exponent bias = 01111 2 = 15; Thus, as defined by the offset binary representation, in order to get the true exponent the offset of 15 has to be subtracted from the stored exponent. The stored exponents 00000 2 and 11111 2 are interpreted specially.
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .