Search results
Results From The WOW.Com Content Network
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel.
Principle of chemical precipitation in aqueous solution. In an aqueous solution, precipitation is the "sedimentation of a solid material (a precipitate) from a liquid solution".
In chemistry, coprecipitation (CPT) or co-precipitation is the carrying down by a precipitate of substances normally soluble under the conditions employed. [1] Analogously, in medicine, coprecipitation (referred to as immunoprecipitation) is specifically "an assay designed to purify a single antigen from a complex mixture using a specific antibody attached to a beaded support".
(Such a non-precipitating combination is a colloid.) Two processes, possibly acting together, can lead to air becoming saturated with water vapor: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud.
The precipitating agent is slowly added to the protein solution under mixing. The aggregating protein particles tend to be compact and regular in shape. Since the particles are exposed to a wide range of shear stresses for a long period of time, they tend to be compact, dense and mechanically stable.
Shear stress was then applied to the top and bottom surfaces of the Ni with a solute atom (Co, Ru, or Re) embedded at the center at 300 K. Previous studies have shown that the general view of size and modulus effects cannot fully explain the solid solution strengthening caused by Re in this system due to their small values. [19]
Preconsolidation pressure is the maximum effective vertical overburden stress that a particular soil sample has sustained in the past. [1] This quantity is important in geotechnical engineering, particularly for finding the expected settlement of foundations and embankments.
In continuum mechanics, hydrostatic stress, also known as isotropic stress or volumetric stress, [1] is a component of stress which contains uniaxial stresses, but not shear stresses. [2] A specialized case of hydrostatic stress contains isotropic compressive stress, which changes only in volume, but not in shape. [ 1 ]