When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    495: the last digit is 5. 6: It is divisible by 2 and by 3. [6] 1,458: 1 + 4 + 5 + 8 = 18, so it is divisible by 3 and the last digit is even, hence the number is divisible by 6. Sum the ones digit, 4 times the 10s digit, 4 times the 100s digit, 4 times the 1000s digit, etc. If the result is divisible by 6, so is the original number.

  3. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  4. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction ⁠ 5 / 7 ⁠ when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...

  5. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  6. Refactorable number - Wikipedia

    en.wikipedia.org/wiki/Refactorable_number

    Zelinsky proved that no three consecutive integers can all be refactorable. [1] Colton proved that no refactorable number is perfect . The equation gcd ( n , x ) = τ ( n ) {\displaystyle \gcd(n,x)=\tau (n)} has solutions only if n {\displaystyle n} is a refactorable number, where gcd {\displaystyle \gcd } is the greatest common divisor function.

  7. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Furthermore, if b 1, b 2 are both coprime with a, then so is their product b 1 b 2 (i.e., modulo a it is a product of invertible elements, and therefore invertible); [6] this also follows from the first point by Euclid's lemma, which states that if a prime number p divides a product bc, then p divides at least one of the factors b, c.

  8. 85 (number) - Wikipedia

    en.wikipedia.org/wiki/85_(number)

    85 is: the product of two prime numbers (5 and 17), and is therefore a semiprime of the form (5.q) where q is prime. specifically, the 24th Semiprime, it being the fourth of the form (5.q). together with 86 and 87, forms the second cluster of three consecutive semiprimes; the first comprising 33, 34, 35. [1]

  9. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.