Search results
Results From The WOW.Com Content Network
One way to model this behavior is called stochastic rationality. It is assumed that each agent has an unobserved state, which can be considered a random variable. Given that state, the agent behaves rationally. In other words: each agent has, not a single preference-relation, but a distribution over preference-relations (or utility functions).
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.
Stochastic music was pioneered by Iannis Xenakis, who coined the term stochastic music. Specific examples of mathematics, statistics, and physics applied to music composition are the use of the statistical mechanics of gases in Pithoprakta, statistical distribution of points on a plane in Diamorphoses, minimal constraints in Achorripsis, the ...
Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion process, [a] used by Louis Bachelier to study price changes on the Paris Bourse, [21] and the Poisson process, used by A. K. Erlang to study the number of ...
In the field of mathematical optimization, stochastic programming is a framework for modeling optimization problems that involve uncertainty.A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions.
In the case where the maximization is an integral of a concave function of utility over an horizon (0,T), dynamic programming is used. There is no certainty equivalence as in the older literature, because the coefficients of the control variables—that is, the returns received by the chosen shares of assets—are stochastic.
Indeed, this randomization principle is known to be a simple and effective way to obtain algorithms with almost certain good performance uniformly across many data sets, for many sorts of problems. Stochastic optimization methods of this kind include: simulated annealing by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi (1983) [10] quantum annealing
For example, the emission of radiation from atoms is a natural stochastic process. It can be simulated directly, or its average behavior can be described by stochastic equations that can themselves be solved using Monte Carlo methods.