Search results
Results From The WOW.Com Content Network
Python supports most object oriented programming (OOP) techniques. It allows polymorphism, not only within a class hierarchy but also by duck typing. Any object can be used for any type, and it will work so long as it has the proper methods and attributes. And everything in Python is an object, including classes, functions, numbers and modules.
Tcl allows multiple parent classes; the order of specification in the class declaration affects the name resolution for members using the C3 linearization algorithm. [12] Languages that allow only single inheritance, where a class can only derive from one base class, do not have the diamond problem. The reason for this is that such languages ...
Python's runtime does not restrict access to such attributes, the mangling only prevents name collisions if a derived class defines an attribute with the same name. On encountering name mangled attributes, Python transforms these names by prepending a single underscore and the name of the enclosing class, for example: >>>
Methods on objects are functions attached to the object's class; the syntax instance. method (argument) is, for normal methods and functions, syntactic sugar for Class. method (instance, argument). Python methods have an explicit self parameter to access instance data , in contrast to the implicit self (or this ) in some other object-oriented ...
In Python, if a name is intended to be "private", it is prefixed by one or two underscores. Private variables are enforced in Python only by convention. Names can also be suffixed with an underscore to prevent conflict with Python keywords. Prefixing with double underscores changes behaviour in classes with regard to name mangling.
A reference to an instance of a class may actually be referring to one of its subclasses. The actual class of the object being referenced is impossible to predict at compile-time. A uniform interface is used to invoke the member functions of objects of a number of different classes.
Two classes are created, A and B, the former is being a superclass of the latter, then one instance of each class is checked. The last expression gives true because A is a superclass of the class of b. Further, you can directly ask for the class of any object, and "compare" them (code below assumes having executed the code above):
The concept of the virtual function solves the following problem: In object-oriented programming, when a derived class inherits from a base class, an object of the derived class may be referred to via a pointer or reference of the base class type instead of the derived class type. If there are base class methods overridden by the derived class ...