Search results
Results From The WOW.Com Content Network
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Therefore, the linear factors are (+) and (). Since the two factors found by this method are complex conjugates, we can use this in reverse as a method of multiplying a complex number to get a real number. This is used to get real denominators in complex fractions. [1]
The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients. Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra ), it follows that every polynomial with real coefficients can be factored into ...
The main reason for studying these numbers is to obtain their factorizations.Aside from algebraic factors, which are obtained by factoring the underlying polynomial (binomial) that was used to define the number, such as difference of two squares and sum of two cubes, there are other prime factors (called primitive prime factors, because for a given they do not factorize with <, except for a ...
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element α, over a field extension L/K, are the roots of the minimal polynomial p K,α (x) of α over K. Conjugate elements are commonly called conjugates in contexts where this is not ambiguous.
In mathematics, the conjugate of an expression of the form + is , provided that does not appear in a and b.One says also that the two expressions are conjugate. In particular, the two solutions of a quadratic equation are conjugate, as per the in the quadratic formula =.