Search results
Results From The WOW.Com Content Network
Uniform Office Format (UOF; Chinese 标文通, literally "standard text general" [1]), sometimes known as Unified Office Format, is an open standard for office applications developed in China. [2] It includes word processing, presentation, and spreadsheet modules, and is made up of GUI , API , and format specifications.
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring.The concept of a module also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers.
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).
In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function : is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,
In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem [1] — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely generated modules.
The localization of a commutative ring R by a multiplicatively closed set S is a new ring whose elements are fractions with numerators in R and denominators in S.. If the ring is an integral domain the construction generalizes and follows closely that of the field of fractions, and, in particular, that of the rational numbers as the field of fractions of the integers.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
The isomorphism theorems were formulated in some generality for homomorphisms of modules by Emmy Noether in her paper Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern, which was published in 1927 in Mathematische Annalen.