Ads
related to: linear span example math test questionsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The cross-hatched plane is the linear span of u and v in both R 2 and R 3, here shown in perspective.. In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains .
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation .
In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.
The closure property also implies that every intersection of linear subspaces is a linear subspace. [11] Linear span Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G.
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:
Many fundamental questions regarding T can be translated to questions about invariant subspaces of T. The set of T-invariant subspaces of V is sometimes called the invariant-subspace lattice of T and written Lat(T). As the name suggests, it is a lattice, with meets and joins given by (respectively) set intersection and linear span.