Search results
Results From The WOW.Com Content Network
The EmPower universal AC outlet is compatible with power plugs from over 170 countries and is designed such that 110 V AC power is not present at the outlet until a suitable plug is fully inserted. The AC EmPower system converts aircraft 400 Hz AC or wild frequency power to standard 60 Hz AC.
They are commonly found on large aircraft and naval ships as well as some large land vehicles. Aircraft APUs generally produce 115 V AC voltage at 400 Hz (rather than 50/60 Hz in mains supply), to run the electrical systems of the aircraft; others can produce 28 V DC voltage. [1] APUs can provide power through single or three-phase systems.
Identification of friendly aircraft is aided by identification friend or foe (IFF) interrogation. The system can be deployed using HMMWV fitted with a 10 kW 400 Hz 115/200 VDC on-board power generator. It can be operated autonomously and communicate with the fire direction center via wideband fiber-optic link.
The De Havilland Canada DHC-8, [2] commonly known as the Dash 8, is a series of turboprop-powered regional airliners, introduced by de Havilland Canada (DHC) in 1984. DHC was bought by Boeing in 1986, then by Bombardier in 1992, then by Longview Aviation Capital in 2019; Longview revived the De Havilland Canada brand. [3]
Many aircraft require 28 V of direct current and 115 V 400 Hz of alternating current. The electric energy is carried from a generator to a connection on the aircraft via 3 phase 4-wire insulated cable capable of handling 261 amps (90 kVA). These connectors are standard for all aircraft, as defined in ISO 6858. [3]
The additional waveform generator (WFG) is needed to 'create' the desired images for use in the airplane. To power the display unit, a three phase 115 VAC 400 Hz including neutral and a 28 VDC signal have to be supplied to the display unit. The CRT version has a Low Voltage Power Supply (LVPS) for creating the needed low voltage signals.
MIL-STD-704 Aircraft Electrical Power Characteristics is a United States Military Standard that defines a standardized power interface between a military aircraft and its equipment and carriage stores, covering such topics as voltage, frequency, phase, power factor, ripple, maximum current, electrical noise and abnormal conditions (overvoltage and undervoltage), for both AC and DC systems.
Backup power was provided by four 24 V 40 Ah batteries connected in series providing 96 V. Secondary electrical systems were 28 V DC, single-phase 115 V AC at 1600 Hz, and three-phase 115 V AC at 400 Hz, driven by transformers and inverters from the main system. The 28 V DC system was backed up by a single 24 V battery. [114]