Search results
Results From The WOW.Com Content Network
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science.The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem.
However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.
2 Example. 3 Complexity. ... Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, ...
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
The algorithm is performed in three stages. The first two stages depend only on the generator g and prime modulus q, and find the discrete logarithms of a factor base of r small primes. The third stage finds the discrete log of the desired number h in terms of the discrete logs of the factor base.
Computing the discrete logarithm is the only known method for solving the CDH problem. But there is no proof that it is, in fact, the only method. It is an open problem to determine whether the discrete log assumption is equivalent to the CDH assumption, though in certain special cases this can be shown to be the case. [3] [4]
which can be proved using the series definition of the polylogarithm and the orthogonality of the exponential terms (see e.g. discrete Fourier transform). Another important property, the inversion formula, involves the Hurwitz zeta function or the Bernoulli polynomials and is found under relationship to other functions below.