When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    The curvature of the universe places constraints on the topology. If the spatial geometry is spherical, i.e., possess positive curvature, the topology is compact. For a flat (zero curvature) or a hyperbolic (negative curvature) spatial geometry, the topology can be either compact or infinite. [8]

  3. Curved space - Wikipedia

    en.wikipedia.org/wiki/Curved_space

    Curved spaces play an essential role in general relativity, where gravity is often visualized as curved spacetime. [2] The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of the universe and the shape of the universe.

  4. Lambda-CDM model - Wikipedia

    en.wikipedia.org/wiki/Lambda-CDM_model

    The ΛCDM model assumes that the shape of the universe is of zero curvature (is flat) and has an undetermined topology. In 2019, interpretation of Planck data suggested that the curvature of the universe might be positive (often called "closed"), which would contradict the ΛCDM model.

  5. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  6. Milne model - Wikipedia

    en.wikipedia.org/wiki/Milne_model

    The Milne universe is a special case of a more general Friedmann–Lemaître–Robertson–Walker model (FLRW). The Milne solution can be obtained from the more generic FLRW model by demanding that the energy density, pressure and cosmological constant all equal zero and the spatial curvature is negative.

  7. Spacetime topology - Wikipedia

    en.wikipedia.org/wiki/Spacetime_topology

    Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity.This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime.

  8. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    Kinematic features besides the object's position are visible by the slope and shape of the lines. [1] In Fig 1-1, the plotted object moves away from the origin at a positive constant velocity (1.66 m/s) for 6 seconds, halts for 5 seconds, then returns to the origin over a period of 7 seconds at a non-constant speed (but negative velocity).

  9. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Thus the Gaussian curvature is an intrinsic invariant of a surface. Gauss presented the theorem in this manner (translated from Latin): Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.