When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [40] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.

  3. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  4. Carmichael's totient function conjecture - Wikipedia

    en.wikipedia.org/wiki/Carmichael's_totient...

    In mathematics, Carmichael's totient function conjecture concerns the multiplicity of values of Euler's totient function φ(n), which counts the number of integers less than and coprime to n. It states that, for every n there is at least one other integer m ≠ n such that φ ( m ) = φ ( n ).

  5. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910. [1] It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function. The order of the multiplicative group of integers modulo n is φ(n), where φ is Euler's totient function.

  6. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    The degree of , or in other words the number of nth primitive roots of unity, is (), where is Euler's totient function. The fact that Φ n {\displaystyle \Phi _{n}} is an irreducible polynomial of degree φ ( n ) {\displaystyle \varphi (n)} in the ring Z [ x ] {\displaystyle \mathbb {Z} [x]} is a nontrivial result due to Gauss . [ 4 ]

  7. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n is given by Euler's totient function φ (n) (sequence A000010 in the OEIS). And then, Euler's theorem says that a φ (n) ≡ 1 (mod n) for every a coprime to n; the lowest power of a that is congruent to 1 modulo n is called the multiplicative order of a modulo n.

  8. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    Euler's totient or phi function, φ(n) is an arithmetic function that counts the number of positive integers less than or equal to n that are relatively prime to n. That is, if n is a positive integer, then φ(n) is the number of integers k in the range 1 ≤ k ≤ n which have no common factor with n other than 1.

  9. Reduced residue system - Wikipedia

    en.wikipedia.org/wiki/Reduced_residue_system

    Here φ denotes Euler's totient function. ... {1, 5, 7, 11}. The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced ...