Search results
Results From The WOW.Com Content Network
) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
Examples of algorithms for this task include New Edge-Directed Interpolation (NEDI), [1] [2] Edge-Guided Image Interpolation (EGGI), [3] Iterative Curvature-Based Interpolation (ICBI), [citation needed] and Directional Cubic Convolution Interpolation (DCCI). [4] A study found that DCCI had the best scores in PSNR and SSIM on a series of test ...
In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. [2] Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc.
Trilinear interpolation is the extension of linear interpolation, which operates in spaces with dimension =, and bilinear interpolation, which operates with dimension =, to dimension =. These interpolation schemes all use polynomials of order 1, giving an accuracy of order 2, and it requires 2 D = 8 {\displaystyle 2^{D}=8} adjacent pre-defined ...
Multivariate interpolation — the function being interpolated depends on more than one variable Barnes interpolation — method for two-dimensional functions using Gaussians common in meteorology; Coons surface — combination of linear interpolation and bilinear interpolation; Lanczos resampling — based on convolution with a sinc function