When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Subderivative - Wikipedia

    en.wikipedia.org/wiki/Subderivative

    Rigorously, a subderivative of a convex function : at a point in the open interval is a real number such that () for all .By the converse of the mean value theorem, the set of subderivatives at for a convex function is a nonempty closed interval [,], where and are the one-sided limits = (), = + ().

  3. Strict differentiability - Wikipedia

    en.wikipedia.org/wiki/Strict_differentiability

    Let K be a complete extension of Q p (for example K = C p), and let X be a subset of K with no isolated points. Then a function F : X → K is said to be strictly differentiable at x = a if the limit (,) (,) () exists.

  4. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Of course, the Jacobian matrix of the composition g ° f is a product of corresponding Jacobian matrices: J x (g ° f) =J ƒ(x) (g)J x (ƒ). This is a higher-dimensional statement of the chain rule. For real valued functions from R n to R (scalar fields), the Fréchet derivative corresponds to a vector field called the total derivative.

  5. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    If there exists an m × n matrix A such that = + ‖ ‖ in which the vector ε → 0 as Δx → 0, then f is by definition differentiable at the point x. The matrix A is sometimes known as the Jacobian matrix , and the linear transformation that associates to the increment Δ x ∈ R n the vector A Δ x ∈ R m is, in this general setting ...

  7. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (strong derivative) for functions not assumed differentiable, but only integrable, i.e., to lie in the L p space ([,]).

  8. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  9. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    there are n intervals given by a 1 < b 1 ≤ a 2 < b 2 ≤ ⋯ ≤ a n < b n in [a, b] such that f (a k) = f (b k) for every k from 1 to n. Then there is a number c in (a, b) such that the n th derivative of f at c is zero. The red curve is the graph of function with 3 roots in the interval [−3, 2]. Thus its second derivative (graphed in ...

  1. Related searches differentiable at x 2 calculator soup answers free pdf download for laptop

    differentiable function x0differentiable graph of f
    differentiable function in graphwhat is a differentiable function