When.com Web Search

  1. Ad

    related to: polynomial f x calculator with steps and two numbers download

Search results

  1. Results From The WOW.Com Content Network
  2. Splitting field - Wikipedia

    en.wikipedia.org/wiki/Splitting_field

    Construct the field extension K i +1 of K i as the quotient ring K i +1 = K i [X] / (f(X)) where (f(X)) denotes the ideal in K i [X] generated by f(X). Repeat the process for K i +1 until p(X) completely factors. The irreducible factor f(X) used in the quotient construction may be chosen arbitrarily. Although different choices of factors may ...

  3. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Horner's method can be used to convert between different positional numeral systems – in which case x is the base of the number system, and the a i coefficients are the digits of the base-x representation of a given number – and can also be used if x is a matrix, in which case the gain in computational efficiency is even greater.

  4. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree d for a polynomial, consider the expansion of n in base m (allowing digits between −m and m) for a number of different m of order n 1/d, and pick f(x) as the polynomial with the smallest coefficients and g(x) as x − m. Consider the number ...

  5. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...

  6. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  7. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...

  8. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The rational univariate representation or RUR is a representation of the solutions of a zero-dimensional polynomial system over the rational numbers which has been introduced by F. Rouillier. [10] A RUR of a zero-dimensional system consists in a linear combination x 0 of the variables, called separating variable, and a system of equations [11]

  9. Special number field sieve - Wikipedia

    en.wikipedia.org/wiki/Special_number_field_sieve

    Not every number is an appropriate choice for the SNFS: one needs to know in advance a polynomial f of appropriate degree (the optimal degree is conjectured to be (⁡ ⁡ ⁡), which is 4, 5, or 6 for the sizes of N currently feasible to factorise) with small coefficients, and a value x such that () where N is the number to factorise.