Search results
Results From The WOW.Com Content Network
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...
In probability theory and statistics, a shape parameter (also known as form parameter) [1] is a kind of numerical parameter of a parametric family of probability distributions [2] that is neither a location parameter nor a scale parameter (nor a function of these, such as a rate parameter).
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
a measure of the shape of the distribution like skewness or kurtosis; if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient; A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its mean. [1] A low standard deviation indicates that the values tend to be close to the mean (also called the expected value ) of the set, while a high standard deviation indicates that the values are spread out over a wider range.
In the case where a parametrized family has a location parameter, a slightly different definition is often used as follows.If we denote the location parameter by , and the scale parameter by , then we require that (;,,) = (() /;,,) where (,,,) is the cmd for the parametrized family. [1]
In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().