Search results
Results From The WOW.Com Content Network
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc. For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints. If an angle is subtended by a straight or curved segment, the segment is said to subtend the angle.
Case: One chord is a diameter. Let O be the center of a circle, as in the diagram at right. Choose two points on the circle, and call them V and A. Draw line OV and extended past O so that it intersects the circle at point B which is diametrically opposite the point V. Draw an angle whose vertex is point V and whose sides pass through points A ...
The angular diameter, angular size, apparent diameter, or apparent size is an angular separation (in units of angle) describing how large a sphere or circle appears from a given point of view. In the vision sciences , it is called the visual angle , and in optics , it is the angular aperture (of a lens ).
Mass point geometry, colloquially known as mass points, is a problem-solving technique in geometry which applies the physical principle of the center of mass to geometry problems involving triangles and intersecting cevians. [1]
Let 'arc AB' denote an arc whose two extremities are A and B of a circle with center 'O'. If a perpendicular BM is dropped from B to OA, then: jyā of arc AB = BM; koti-jyā of arc AB = OM; utkrama-jyā of arc AB = MA; If the radius of the circle is R and the length of arc AB is s, the angle subtended by arc AB at O measured in radians is θ ...
For a vertical chord AB of the unit circle, the sine of the angle θ (representing half of the subtended angle Δ) is the distance AC (half of the chord). On the other hand, the versed sine of θ is the distance CD from the center of the chord to the center of the arc.