Search results
Results From The WOW.Com Content Network
The gram-atom is a former term for a mole of atoms, and gram-molecule for a mole of molecules. [ 7 ] Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass ( M r ). [ 8 ]
For ideal gases, the molar volume is given by the ideal gas equation; this is a good approximation for many common gases at standard temperature and pressure. The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ...
For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant. The law is named after Amedeo Avogadro who, in 1812, [ 2 ] [ 3 ] hypothesized that two given samples of an ideal gas, of the same volume and at the same temperature and pressure, contain the same ...
Gas stoichiometry is the quantitative relationship (ratio) between reactants and products in a chemical reaction with reactions that produce gases. Gas stoichiometry applies when the gases produced are assumed to be ideal, and the temperature, pressure, and volume of the gases are all known. The ideal gas law is used for these calculations.
A gas entering a throttle at a state corresponding to a point on this curve to the right of its maximum will cool if the final state is below the curve. Right: a close-up of the region between zero and the critical point (1,1), showing the overlap between the inversion curve (green) and saturation curve (dashed purple).
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows: