Search results
Results From The WOW.Com Content Network
Specified Minimum Yield Strength (SMYS) means the specified minimum yield strength for steel pipe manufactured in accordance with a listed specification 1. This is a common term used in the oil and gas industry for steel pipe used under the jurisdiction of the United States Department of Transportation .
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
This assumes that yield occurs when the shear stress exceeds the shear yield strength τ = σ 1 − σ 3 2 ≤ τ y . {\displaystyle \tau ={\frac {\sigma _{1}-\sigma _{3}}{2}}\leq \tau _{y}.\,\!} Total strain energy theory – This theory assumes that the stored energy associated with elastic deformation at the point of yield is independent of ...
Graph of Johnson's parabola (plotted in red) against Euler's formula, with the transition point indicated. The area above the curve indicates failure. The Johnson parabola creates a new region of failure. In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column.
The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]
where is a parameter, is the value of when the plastic strain is zero (also called the initial cohesion yield stress), is the angle made by the yield surface in the Rendulic plane at high values of (this angle is also called the dilation angle), and (,) is an appropriate function that is also smooth in the deviatoric stress plane.
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]